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The effect of a magnetic field on the transport and scattering 
properties of randomly rough surfaces 
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Received 19 March 1991, in final form 9 July 1991 

AbstrpeL The quantum reflectivity of a randomly rough surface in the presence of a 
uniform magnetic field parallel to the mean surface is approximately calculated. The 
resulting specnlarity function-depending on the RMS roughness amplilude, Ihe i a lml  
correlation length, the angle of incidence of a conduction electron and the angle belween 
its classical trajectory and the magnetic field-is used in conjunction with the Bolmann 
equation in order to calculate the magnetoresistance of thin films as a function of 
field s tmglh  and lhickness. For intenoediale fields, we find considerable disagmmenls 
W e e n  these results and the usual theory in which the surface specularity is represenled 
by a phenomenological parameter. 

1. Introduction 

It is well known that the electrical resistivity of good conductors at low temperatures 
turns out to depend on the size and shape of the sample. This is due to the fact that 
the mean-free path of the conduction electrons becomes long in comparison with the 
dimensions of the material, resulting in increased contributions to the resistivity from 
surface scattering of these electrons (Chopra 1969, Brandli and Olsen 1969). 

Most experimental studies of this size effect measure the apparent DC conduc- 
tivity of thin films or wires as a function of thickness. In order to interpret such 
results, however, it has been necessary to assume that the mean-free path is the same 
function of temperature for all different specimens. Alternatively, one can measure 
conductivity effects with the added presence of a magnetic field B. By varying B, it 
is possible to obtain information about the surface effect (along with other properties 
of the conduction electrons) by measurements performed on a single sample. For 
instance, it has been found that the longitudinal magnetoresistance of thin films in- 
crease with B in the low field region, in a way that depends sensitively on the amount 
of diffuse surface scattering (Way and Kao 1972). 

It is obvious that the amount of information one can extract from these measure- 
ments depends critically on the reliability of the theories to which they are compared. 
These usually proceed from a solution of the Boltmann transport equation in the 
approximation of a time of relaxation, to which three other premises are added: it is 
supposed that the Fermi surface is spherical, that the mean free path is isotropic, and 
that the surface scattering is represented by a parameter p equal to the probability 
that an electron is reflected specularly at the surface (Fuchs 1938). The first two 
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assumptions can be somewhat patched up-the case of ellipsoidal Fermi surfaces, for 
instance, can be easily accommodated (Ham and Mattis 1960, Price 1960). However, 
the thud hypothesis is, in the words of Sambles and Preist (1982), ‘an unacceptable 
oversimplilication’. In order to improve upon it, the physical mechanism of surface 
scattering bad to be investigated more closely. Thus, as long as the source of surface 
diffusiveness lies in the presence of surface asperities, the specularity parameter can 
be replaced by a surface specularity function obtained by Soffer (1967) from a quan- 
tum mechanical calculation. This function depends on the angle of incidence of the 
elecuom upon the surface and the root-mean square height of its roughness. With 
this change in the usual transport theory, excellent accord is found between theoret- 
ical and experimental results in the DC conductivity of thin foils and wires (Sambles 
and Elsom 1980, Sambles et a1 1982). 

The same approach was applied to the calculation of the magnetoresistance and 
Hall effect of thin films (Preist and Sambles 1986), and to the longitudinal magnetore- 
sistance of thin wires (Golledge et a1 1987). But here the use of Soffer’s expression 
for the surface specularity becomes suspect As is well known, the effect of mag- 
netic fields, in opposition to the case of electric fields, results in surface states whose 
existence profoundly modses the scattering properties of the boundary. Thus, one 
expects that the specularity function develops a dependence on the magnitude of the 
magnetic field (as well as on its orientation) and, consequently, that no comparison of 
the results of the usual theory to magnetoresistance measurements made at different 
values of B can have much meaning. 

On the other hand, by means of an improved infinite order perturbative method, 
one of us has calculated another expression for the reflectivity function for the case 
B = 0 (Moraga 1987). This function not only gives better account’of higher order 
effects of !he amplitude of the surface roughness, but is also a function of the lateral 
correlation of these asperities-a factor ignored in Soffer’s treatment. The procedure 
has been applied to the calculation of the DC conductivity of thin films and wires, 
of size effects on thermoelectric properties, and of the general scattering properties 
of rough interfaces (Moraga 1989, 1990). By a generalization of these methods, we 
calculate approximately in this paper a new reflectivity function p for the case of 
a magnetic field parallel to the surface. This is done by solving the SchrOdinger 
equation for an electron near a randomly rough surface and by extracting the appro- 
priate quantum reflectivity coefficient, which we identify with p, from the resulting 
wavefunction. This reflectivity coefficient differs in two significant respects with the 
specularity parameter used up until now. First, it is very anisotropic, depending not 
only on the angle of incidence as in the case B = 0 but also on the angle between 
the classical trajectory of the electron as it hits the surface and that of the magnetic 
field. Furthermore, its magnitude depends on B in such a way that, on the average 
for a given surface, p is found to be an increasing function of B. 

In order to illustrate the applications of the present theory, we calculate in this 
paper the magnetoresistance of a thin metallic film in the longitudinal case, i.e. 
the case in which the electric and magnetic fields are parallel to each othcr and 
to the plane of the surfaces. For intermediate values of the magnetic field there 
are considerable discrepancies between the usual description in which the specularity 
parameter is independent of B, and the more rigorous treatment given here. 

L A  Moraga and CrisriCn Martinez 
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2. Surface perturbation theory 

We suppose that the metal fills the half-space limited by a randomly rough surface, 
while the remaining space is empty. The average (or ideal) surface coincides with the 
x-y plane (figure 1). The wavefunction $(z) for an electron in this metal is given 
by the Schmdinger equation in integral form 

$(z)&,v = $v( z )  + {(fi21zm)[vG(~,z)$(s) - G(s,z)V$(s)I 

+(ihe/mc)G(s, .)A$(.)} d2s  (1) 

where G(z, z') is the Green function for the infinite domain, A is the vector potential 
whose curl is the magnetic field E, &(z) is a source of arbitrary strength, S is the 
surface which bounds the domain V and 6s,v is equal to one if the point z lies 
in the domain V and is zero otherwise (Morse and Feshbach 1953). This equation 
simplifies considerably in the infinite banier model 

$ ( ~ ) L , v  = $v(z) - X J G ( s , ~ ) v + ( s ) d ~ s  (2) 

with X E h2/2m. It is well known that this approximation suffices for the calculation 
of reflectivity coefficients We shall adhere to it in what follows. 

Flgore 1. The metal occupies the half-space z < C. the other half-space z > C being 
empty. ?he random surface proftle function C(z,y) has mean zero and, thus, the 
avenge or ideal surface is the 2-y plane. 

We shall suppcse that the magnetic field lies in the plane of the ideal surface. 
Putting B = Be,, we have that A = -Bze,. Then, the problem can be simplified 
further by Fourier transforming both the wave and Green function in the I-y plane, 
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We note that the Fourier component of the Green function is given by 
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where +(*) is the solution of the onedimensional Schrbdinger equation 

2m 2 m  2 m  d2z 

which is regular at z -+ fco, respectively. Also, W is the Wronskian of these 
two functions and z, ( z< )  is the larger (smaller) quantity of z and z‘. As is well 
known (Landau and Lifshitz 1958), the solutions of this one- dimensional problem 
are parabolic cylinder functions (Abramowitz and Stegun 1965) 

+ g ) ( z )  = ~ [ a , * ( ~ m w / ~ ) ’ / ’ ( z  + z,)] (7) 

where we find for the angular frequency w = leBl/mc, the centre of the orbit 
zo = ehk, /eB,  the parameter 

and the Wronskian 

In this notation, the source function is given by 

where A ,  is an arbitrary amplitude. 

3. The effects of the surface roughness 

We turn now to the specification of the surface roughness. We shall suppose that the 
actual surface is described by a random profile function z = C(z) which we assume 
to be distributed as a Gaussian process with zero mean, and correlation 

(C(X)C(X’)) = @ W ( X  - X‘) (11) 
where 6 is the root-mean square (RMS) amplitude of the surface roughness. We also 
assume that the pair correlation function W is 

W ( x )  = exp(-IX12/a2) (12) 

where a is the correlation length. 
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We note that, if the expressions for $, qjv and G-given respectively by formulae 
(3), (10) and (4)-are substituted into (2), the value of the exact wavefunction is 
obtained, provided that the derivative of its Fourier component is known at the 
surface. This latter quantity can be obtained from an asymptotic condition analogous 
to an extinction theorem. Thus, for z > 6, it is seen that equation (2) can be Written 
as 

0 = W , A , ( ~ T ) ~ ~ ( K  - R) + d Z Y e ’ Y ( R - K )  4; ( ) &(C(Y)) (13) J 
where 

is the unknown quantity to be determined. Now we define Fourier transforms of all 
these quantities: 

Thus, equation (13) can be written as 

Given a random quantity f ,  we can write it as the sum of its mean f and its 
fluctuation Af , 

f = ( f )  A f ~ f - f  (18) 

where (. . .) denote the average over the assembly of surface roughness functions 
characterized by the same RMS roughness amplitude and lateral correlation length. 
On the other hand, we find from (15) that 

(g$&) = ( 2 ~ ) ~ 6 ( P ) g g ’  (19) 

Thus we can write (17) in the convenient form of a Fredholm integral equation 

where 
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and 
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K:R;K,P E A S & i R ; K - p / & i R .  (23) 

This integral equation can be effectively solved by means of the 'smoothing 
method' (Maradudin 1986). Thus we can write, instead of (21), 

where the new kernel M is itself a solution of another integral equation, namely 

At first sight it may appear that nothing has been gained by this procedure. A 
complicated integral equation has been replaced by two other still more involved 
integral equations. But in fact two decisive simplifications have been achieved. First, 
equation (24) gives rise to another equation which is algebraic rather than integral and 
easily soluble. Furthermore, if one solves equation (25) perturbatively to some finite 
order (by retaining, for instance, only the first non-vanishing term in the iterated 
kernel approximation) this is equivalent to an infinire order perturbation schema 
applied to the original equation (21). 

4. The average wavetunetion 

We begin by calculating the average wavefunction. Averaging both sides of equation 
(24) we have 

where the average kernel is 

M R K , p  ( M R K , P )  = ( ( K )  t (IcAx) + ( K c ( A ( x A x c ) ) )  + " ' ) R K , P  (27) 

by (24). We note that (K) = 0. Thus, the first non-zero term in the expansion (27) 
is fi N ( K A K )  = (Ag&iRK-sAg$J!R;s-p), that is 

The precise form of the right-hand side of equation (28) cannot, in general, be 
calculated, because it depends on the correlation of a wavefunction at two Merent  
points of the surface and this depends, in turn, on the specific physical situation. (For 
the present case, the appropriate functions are calculated in the appendix.) In order 
to proceed further, let us define a new function H by 
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where a , b  = f. This function depends on the difference Y - Y', because the 
operation of taking averages re-establishe5 the translational invariance in the r-y 
plane. Thus, we immediately obtain 

(30) (A&!QA&!;Q,) = (2n)26(Q + Q I ) S K  - ( a ) - ( a ) ~ ( % b )  S K ,  K ; K , ( Q )  

where the function F is given by the Fourier transform 

The translational invariance of averages implies furthermore that the kernel M is 
diagonal in its two last indices 

MRK,+,  = (2n)26(K - P)&.. (32) 

defining the quantity C, analogous to a self-energy function . We note that, as 
anticipated, the equation (26) is thus algebraic rather than integral, with solution 

using (22). We note, lastly, that in the approximation in which (28) is valid, 

In this way we have computed the average of the only unknown of (2), ie. 
the quantity (&(C)). Thus, this same equation allows us to calculate the average 
wavefunction of a conduction electron anywhere inside the metal. On the other hand, 
it is not apparent that an average wavefunction is an interesting (or even meaningful) 
quantity. In order to compute the reflectivity of the randomly rough surface, for 
instance, we need instead the average particle currents which, on account of spatial 
correlations, clearly cannot he expressed simply as products of average wavefunctions 
and their derivatives. 

5. The quantum reflectivity of a rough surface 

We now take the asymptotic limit z -6 in equation (2),  ie. we consider a 
position well below the mean excursion of the surface roughness. It is seen that the 
wavefunction for a mnduction electron in the metal is 

where the refietion amplitude RK,Q is given by 
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By the Fourier transform formulae (15) and (16), 
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We note that for the case of a perfectly smooth surface the corresponding reflection 
amplitude is 

The average scattered current involves not only (R) but the average (R’R),  given by 
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According to (38), we see that a perfectly smooth surface can produce only specular 
reflections. 

In an earlier treatment of this scattering problem one of us, following Shen and 
Maradudin (1980), performed a separation of the scattered intensity into specular 
and diffuse contributions which was similar in form, although different in principle 
from the present one (Moraga 1987). Its purpose was, however, the same. Given 
a current incident with a certain direction K, the second term in the RHS of (35) 
allows us to compute the particle current scattered by the randomly rough surface. 
According to (44) this scattered current divides naturally into a specular and a diffuse 
contribution, which we identify with the specular and diffuse parts of the distribution 
function. Thus, the specularity parameter appearing in the boundary conditions for 
the Boltzmann transport equation is taken here to be identical with the specular part 
of the quantum reflectivity function; Le. the ratio of the average specularly scattered 
current to the incident current 

This procedure can be justi6ed in general terms by making use of microscopic 
considerations. -4s is well known, the quantum transport theory proceeds not from 
a transport equation, but by identifying the distribution function with certain one- 
particle Green function (Kadanoff and Baym 1962, Rammer and Smith 1986). Thus, 
the problem of the spatial boundary conditions appropriate for this distribution fun0 
tion can be related to the corresponding problem for the Green function, which is in 
turn related to that of the wavefunction by a well known prescription. 

In the present case, this average is computed as follows. First, from (15) and 
(16)-or, rather, their inverses-we see that 

Furthermore, we have from (24) 

by (33). On the other hand, the lowest non-zero contribution to the average of the 
second term in the RHS of this equation is 

= - (2~)’6(S t S’)F:&is(S) 

by (25), (23) and (31). Thus, by (47) 

(49) 



7732 L A  Moraga and Cristih MarllneL 

and, in the approximation in which (34) is valid 

(51) 

In order that this reflected intensity can be properly interpreted in t e r m  of 
a quantum reflectivity function, it is necessary that the wavefunctions have correct 
asymptotic properties. In our case we ought to take, for instance, as wavefunetion 
U(a,&z)  + i r ( a  - a)V(a,=kx) in (7) instead of just U ( a , f z ) ,  and calculate 
the reflected intensity in the limit in which these functions resemble plane waves 
(Abramowitz and Stegun 1965) . Alternatively, we can proceed by calculating the 
ratio of the intensity reflected by the rough surface to the intensity reflected by a 
perfectly smooth surface. Thus, as by (22) the erst factor of the RMS of (51) is just 
&jc+’/g~’12 , the reflectivity function is obtained from i t  by a further division by 
p K - - I+ (t)  (o)12/l+(-)(o)12. 

The quantum reflectivity function p is thus 

accurate up to terms of order F.  

6. The speeularity function 

For practical purposes, a simplified form of the reflectivity function (52) can be used. 
We note first that 3g) = +(*)(O)+ o(a2). Furthermore, the rational function on the 
RHS of (52) can be replaced by an exponential function of the appropriate variables, 
maintaining the accuracy in F. Thus we can write 

also exact up to terms of order F. As the wavevector of a conduction electron has 
necessarily a fixed length k,, the subindex K in (53) denotes in fact the direction 
in which the electron arrives at the rough surface. In the semiclassical formulations 
which start from the Boltzmann transport equation, this dependence is important 
because the transport coefficients turn out to be integrals over the angles defining 
this direction. 

The semiclassical and quantum formulation are related as follows. Under a mag- 
netic field applied in the z-direction the wavevector of the electron as a function of 
time t is 

k , ( f )  = k F c o s 6  
k , ( f )  = kFcos(wt  + + ) s i n 0  
k,( t) = - k ,  sin(& + +) sin 6 

(54) 
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where w is the same as before. Thus, the orbit of an electron passing at t = 0 
throughout the point z = 0, y = r s in  +sin 0 and z = 0 is 

s ( t ) = w r t c o s @  y ( t ) = r s i n ( w t + + ) s i n @  

z = r[cos(wt + 4)  - cos 41 sin 0. 
(55) 

The projection of this orbit on the y-z plane is a circle of radius r = hkF/mw = 
hkFc/eB centred at z,, = hk,(t = O)/mw, in accordance with equation (7). We 
note that this radius P is related to the parameter a of (8) by 

p = ( =?&)l'z 
that B is the angle between the trajectoly at t = 0 and the magnetic field, and that 
the angle of incidence 0 is given by 

cos 0 = -sin +sin 0. (57) 

We note that formula (53) has contributions of all orders on the RMS amplitude of 
the surface roughness 6 and the lateral correlation length a and that it further depends 
on the strength and direction of the applicd magnetic field. The latter is, of course, 
the main advantage of the present treatment over earlier formulations. Formerly, 
experimental data were interpreted in terms of a phenomenological parameter p 
or of the specularity function of Soffer (1967), both entirely independent of the 
magnitude and direction of the magnetic field. In the present case, the appropriate 
wavefunctions are, by (7). parabolic cylinder functions. Fortunately, the average of a 
parabolic cylinder function is another parabolic cylinder function, and the correlation 
of two such functions can be written as a series of products of two other parabolic 
cylinder functions (see the appendix). This makes it possible to calculate analytic 
formulae for the specularity function in this case. 

In figures 2-5 we have plotted the values of this specularity as a function of the 
angle of incidence 0 in which the electron, following a classical trajectory, would 
arrive at the average surface, and 8, which is the angle made by this trajectory at the 
point of incidence with the direction of the magnetic field. All figures correspond to 
values of ak, = 0.5, 6k, = 0.25, while the strength of the magnetic field B (in 
units of hck$/2e) vanes from 2 to 4. It is seen that, at low fields, the specularity 
function shows a considerable angular anisotropy although exhibiting a certain region 
in which the surface appears to be nearly specular. When the magnetic field is 
increased, these extremes of behaviour diminish, and the specularity becomes a much 
smoother function of the angles. We note that the minimum of the specularity occurs 
at intermediate values of 0, suggesting the interest of performing magnetoresistance 
measurements in thin film as a function of the angle between the magnetic and 
electric fields. 

7. The longitudinal magnetoresistance of thin films 

The longitudinal conductivity cr of a thin metal film, i.e. E parallel to B and to the 
plane of the film) in units of the bulk conductivity U-, was calculated by Koenisberg 



1134 L A Morugu and Crirlicn Murthez 

P 

"I2 

Figure 2. The specularity function of a randomly 
rough surface as a function of 8 and 8, which 
arc the angles that the classical trajectory makes 
with the average surface and the magnetic field, 
respectively, at the p in t  of incidence. Here (I kF = 
0.5, 6 k ~  = 0.25 and B = 2 (B in units of 

Figure 3. As in figure 2, exxcept lhal B = 2.5. 

hck$/2e) .  

P P 
1.0 

n12 

Figure 4. As in figure 2, except that B = 3. Figure 5. As in figure 2, excepl that B = 4. 

(1953), Kao (1965), Ditlefsen and Lothe (1966), McGill (1968) and Way and Kao 
(1972). All these authors assumed, besides the validity of the Bolivnann transport 
equation, a spherically symmetrical mean-free path and Fermi surface, and that the 
boundary scattering could be described by a specularity parameter. In the notation 
of the present paper, this conductivity is 

where d is the thickness of the film, q = i / r  sin I3 (1  is the mean-free path), $ is the 
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angle traversed by an electron on its classical path from a point on the surface to a 
generic point in the bulk and Q is the angle traversed along the same orbit if it were 
extended until the electron hits a boundary again. These angles can be expressed in 
terms of 0, q5 and z (Way and Kao 1972). The specularity function p is given by (53), 
where the parallel component of the wavevector K is related to the angles by (54) 
evaluated at 1 = 0. 

I 
0 0.2 0.4 0.6 0.8 

dll 

F@re 6. The resistivity p (in units of the bulk resistivity p m )  of a thin metallic film of 
thickners d (in units of the mean-free path I) for the case when the electric and magnetic 
fields are bath longitudinal and parallel. Here a k F  = 0.5, I = 5, 6 k ~  = 0.25 and 
B = 2. me discontinuous line is the magnetoresistance calculated according to the 
theory of this paper, the continuous lines are calculated [or p = a constant having the 
values shown. 

I I 
0 0.2 0.4 

dl I 

Figure 7. As in figure 6, except that 6 k ~  = 0.125 and B = 5.5. 

In figures 6 and 7 we show calculations of this longitudinal magnetoresistance of 
thin metallic films as a function of thickness d in units of the mean-free path 1. In 
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both figures, akF = 0.5 and I = 5; in figure 6 61cF = 0.25 and B = 5, and in figure 
7, 6k,  = 0.125 and B = 5.5. The curves calculated using the present approach 
are compared with curves computed from the usual theory in which p is a constant 
(Way and Kao 1972). It is apparent that for high enough values of the magnetic 
field, the magnetoresistence computed according to the present theory is similar in 
shape to one of those obtained from the usual formalism (figure 7). On the con- 
trary, for a somewhat smaller field, the beha\,iour predicted by the theory presented 
here is qualitatively different from the magnetoresistence calculated according to the 
older formalism (figure 6); corresponding in appearance to surfaces which become 
smoother as the thickness of the 61m is diminished. Of course if the magnetic field 
is decreased further the magnetoresistance itself also decreases, and the new results 
tend to conform again with those obtained by the usual method. 

L A Moraga and CristGn Marfhez 

8. Conclusions 

A priori, one should not expect much of a transport theory based on the Boltzmann 
equation. In fact, this treatment gives surprisingly correct results about the electrical 
resistivity of solids. In a well known classical paper, for instance, Prange and Kadanoff 
(1964) derived a transport equation for the case of phonons and electrons using the 
formulation of Kadanoff and Baym (1962). They wrote that their results ‘lead one 
to belicve that there is nothing to worry about the use of the Boltzmann equation 
throughout the entire temperature range. With the Landau correction, ordinary 
transport properties should be capable of description to a very high accuracy’. They 
also concluded that the DC resistivity ‘is unaffected by many-body effects’. In recent 
years, the transport properties of solids have been further and extensively explored 
by means of quantum field-theoretical methods (Rammer and Smith 1986, Mahan 
1987). The use of these methods has provided additional microscopic justification 
for the use of the Boltzmann equation, and has shown how this approach should bc 
generalized in order to take into account renormalization and lifetime effects. 

When the treatment based on the Boltzmann equation is extended to the case of 
small samples, however, the results have not been so good. Sambles and a number of 
collaborators (Samblcs and Elsom 1980, Sambles and Preist 1982, Preist and Sambles 
1986) have analysed the discrepancies between theory and experiment in this case, 
and have shown that they originate not from the Boltzmann equation itself, but from 
the use of inadequate boundary conditions. When the correct conditions are used, 
however, surprisingly good agreements are obtained, even in the case of metals with 
quite complicated Fermi surfaces. 

This paper has been concerned with setting up just these boundary conditions for 
the case of scattering by a random surface in the presence or a magnetic field. The 
new boundary conditions, in the form of an angle-dependent and field-dependent 
specularity function p ,  have been obtained by solving the SchrBdinger equation ap- 
propriate for this situation approximately. Besides its dependence on the strength and 
direction of the magnetic field, this p is a function of the RMs average of the depar- 
ture of the surface from Eatness and of the lateral correlation length. By exploiting 
the properties of the parabolic cylinder functions (the wavefunctions of the electrons 
in this case), we have computed explicit formulae for the correlation functions, whose 
Fourier transforms determine the value of p .  

In view of these considerations, it appears reasonable to suppose that the eleo 
trical resistivities of thin films and wires computed using these improved boundary 
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conditions will be in good accord with experience in this case too. For instance, we 
have found that the spatial anisotropy of the new specularity parameter results in 
signiticant differences between the longitudinal magnetoresistance of thin films pre- 
dicted by the new and the old formulations at intermediate values of the magnetic 
field strength. Thus, one should be able to distinguish between these two theories by 
means of resistivity measurements made on films whose surface characteristics have 
been independently determined. 

Appendix 

Let U(Q,Z) denote the parabolic cylinder function of argument I and parameter Q 

(Abramowitz and Stegun 1965). If C is a Gaussian random variable with zero mean 
and standard deviation 6, and (. . .) denotes the average taken over this probability 
distribution, then 

This can be most easily proved proceeding from the integral representation of U. By 
making use of its asymptotic expansion, one can see that for Pz,, > 0--in spite of 
appearances-this average is regular at the point p262 = 2. 

If, furthermore, C, and Cz are two such random variables with correlation 62W, 
it can also be shown that 
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