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The eﬁ'ect of a magnetic field on the transport and scattering
properties of randomly rough surfaces

L A Moraga and Cristidn Martinez

Laboratorio de $élidos, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago,
Chile

Received 19 March 1991, in final form 9 July 1991

Abstract. The quantum reflectivity of a randomly rough surface in the presence of a
uniform magnetic field parallel to the mean surface is approximately calculated. The
resulting specnlarity function—depending on the rRMS roughness amplitude, the lateral
correlation length, the angle of incidence of a conduction eleciron and the angle between
ils classical trajectory and the magnetic field—is used in conjunction with the Boltzmann
equation in order to calculate the magnetoresistance of thin films as a function of
field strength and thickness. For intermediate fields, we find considerable disagrecments
between these results and the usual theory in which the surface specularity is represented
by a phenomenological parameter.

1. Introduction

It is well known that the electrical resistivity of good conductors at low temperatures .
turns out to depend on the size and shape of the sample. This is due to the fact that
the mean-free path of the conduction electrons becomes long in comparison with the
dimensions of the material, resuliing in increased contributions to the resistivity from
surface scattering of these electrons (Chopra 1969, Brandli and Olsen 1969).

Most experimental studies of this size effect measure the apparent DC conduc-
tivity of thin films or wires as a function of thickness. In order to interpret such
results, however, it has been necessary to assume that the mean-free path is the same
function of temperature for all different specimens. Alternatively, one can measure
conductivity effects with the added presence of a magnetic field B. By varying B, it
is possible to obtain information about the surface effect (along with other properties
of the conduction electrons) by measurements performed on a single sample. For
instance, it has been found that the longitudinal magnetoresistance of thin films in-
crease with B in the low field region, in a way that depends sensitively on the amount
of diffuse surface scattering (Way and Kao 1972).

It is obvious that the amount of information one can extract from these measure-
ments depends critically on the reliability of the theories to which they are compared.
These usually proceed from a solution of the Boltzmann transport equation in the
approximation of a time of relaxation, to which three other premises are added: it is
supposed that the Fermi surface is spherical, that the mean free path is isotropic, and
that the surface scattering is represented by a parameter p equal to the probability
that an electron is reflected specularly at the surface (Fuchs 1938). The first two
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assumptions can be somewhat patched up—the case of ellipsoidal Fermi surfaces, for
instance, can be easily accommodated (Ham and Mattis 1960, Price 1960). However,
the third hypothesis is, in the words of Sambles and Preist (1982), ‘an unacceptable
over-simplification’. In order to improve upon it, the physical mechanism of surface
scattering had to be investigated more closely. Thus, as long as the source of surface
diffusiveness lies in the presence of surface asperities, the specularity parameter can
be replaced by a surface specularity function obtained by Soffer (1967) from a quan-
tum mechanical calculation. This function depends on the angle of incidence of the
electrons upon the surface and the root-mean square height of its roughness. With
this change in the usual transport theory, excellent accord is found between theoret-
ical and experimental results in the DC conductivity of thin foils and wires (Sambles
and Elsom 1980, Sambles ef al 1982).

The same approach was applied to the calculation of the magnetoresistance and
Halt effect of thin films (Preist and Sambles 1986), and to the longitudinal magnetore-
sistance of thin wires (Golledge et a/ 1987). But here the use of Soffer’s expression
for the surface specularity becomes suspect. As is well known, the effect of mag-
netic ficlds, in opposition to the case of electric fields, results in surface states whose
existence profoundly modifies the scattering properties of the boundary. Thus, one
expects that the specularity function develops a dependence on the magnitude of the
magnetic field (as well as on its orientation) and, consequently, that no comparison of
the results of the usual theory to magnetoresistance measurements made at different
values of B can have much meaning.

On the other hand, by means of an improved infinite order perturbative method,
one of us has calculated another expression for the reflectivity function for the case
B = 0 (Moraga 1987). This function not only gives better account of higher order
effects of the amplitude of the surface roughness, but is also a function of the lateral
correlation of these asperities—a factor ignored in Soffer’s treatment. The procedure
has been applied to the calculation of the DC conductivity of thin films and wires,
of size effects on thermoelectric properties, and of the general scattering properties
of rough interfaces (Moraga 1989, 1990). By a generalization of these methods, we
calculate approximately in this paper a new reflectivity function p for the case of
a magnetic field paralle] to the surface. This is done by solving the Schrodinger
equation for an electron near a randomly rough surface and by extracting the appro-
priate quantum reflectivity coefficient, which we identify with p, from the resulting
wavefunction. This reflectivity coefficient differs in two significant respects with the
specularity parameter used up until now. First, it is very anisofropic, depending not
only on the angle of incidence as in the case B = 0 but also on the angle between
the classical trajectory of the electron as it hits the surface and that of the magnetic
field. Furthermore, its magnitude depends on B in such a way that, on the average
for a given surface, p is found to be an increasing function of B.

In order to illustrate the applications of the present theory, we calculate in this
paper the magnetoresistance of a thin metallic film in the longitudinal case, ie.
the case in which the electric and magnetic fields are parallel to each other and
to the plane of the surfaces. For intermediate values of the magnetic field there
are considerable discrepancies between the usual description in which the specularity
parameter is independent of B, and the more rigorous treatment given here.
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2, Surface perturbation theory

We suppose that the metal fills the half-space limited by a randomly rough surface,
while the remaining space is empty. The average (or ideal) surface coincides with the
x-y plane (figure 1). The wavefunction +(x) for an electron in this metal is given
by the Schrodinger equation in integral form

W(2)b, = by (2) + fs (B /2m)[VG(s,2)%(s) - G(s,2)VH(5)]
+(ike/mc)G(s,z)AY(s)} dis 1)

where G(z, z') is the Green function for the infinite domain, A is the vector potential
whose curl is the magnetic field B, (=) is a source of arbitrary strength, S is the
surface which bounds the domain V' and §,, is equal to one if the point = lies
in the domain V' and is zero otherwise (Morse and Feshbach 1953). This equation
simplifies considerably in the infinite barrier model

W2)uy = by(e) - A [ Gls, ) Vi(s)d"s ®

with A == A% /2m. It is well known that this approximation suffices for the calculation
of reflectivity coeflicients. We shall adhere to it in what follows.

Figere 1. The metal occupies the half-space z < ¢, the other half-space z > ( being
empty. The random surface profile function {(z,y) has mean zero and, thus, the
average or ideal surface is the z—y plane.

We shall suppose that the magnetic field lies in the plane of the ideal surface.
Putting B = Be,, we have that A = —Bze,. Then, the problem can be simplified
further by Fourier transforming both the wave and Green function in the z-y plane,

dk,dk,
Wz, y,2) = () = j et expliChy + By W, ()

2 .
= [ G a2 @)

d*K

G(z,z') = (27)2

XX Gp(z,2"). C))
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We note that the Fourier component of the Green function is given by
1 -
Gr(z #) = =i (25)85(20) ©)
AW

where ¢{*) is the solution of the one-dimensional Schrodinger equation

2.2

which is regular at z — =oo, respectively. Also, W is the Wronskian of these
two functions and z, (z.) is the larger (smaller) quantity of z and 2. As is well
known (Landau and Lifshitz 1958), the solutions of this one- dimensional problem
are parabolic cylinder functions (Abramowitz and Stegun 1965)

¢ (2) = U, 2(2muw f5)/2(z + z,)] 7

where we find for the angular frequency w = |eB|/me, the centre of the orbit
zy = ehk, feB, the parameter

1 [RkE
Q=E(2m“’—£) ®)

and the Wronskian

_ 4mrw 1/2 1 . -7

In this notation, the source function is given by

d2K
(m)?

where Ay is an arbitrary amplitude.

by () = e XX 4 ¢(F)(2). (10)

3. The effects of the surface roughness

We turn now to the specification of the surface roughness. We shall suppose that the
actual surface is described by a random profile function z = ¢(z) which we assume
to be distributed as a Gaussian process with zero mean, and correlation

(X)X = W(X -~ X) (1)

where 6 is the root-mean square (RMs) amplitude of the surface roughness. We also
assume that the pair correlation function W is

W(X) = exp(~IX[*/a?) (12)

where a is the correlation length,
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We note that, if the expressions for 1, 9, and G—given respectively by formulae
(3), (10) and (4)—are substituted into (2), the value of the exact wavefunction is
obtained, provided that the derivative of its Fourier component is known at the
surface. This latter quantity can be obtained from an asymptotic condition analogous
to an extinction theorem. Thus, for z > §, it is seen that equation (2) can be written
as

0= Wi Ag(27)26(K — R) + f a2y Y R-K)gyr (¢(Y)) (13)
where
, d
1e(2) = b (2) (14)

is the unknown quantity to be determined. Now we define Fourier transforms of all
these quantities:

oh = [y e P vy (15)
b = [ 4V YUY, (16)

Thus, equation (13) can be written as
2P (. =

Given a random quantity f, we can write it as the sum of its mean f and its
fluctvation A f ,

f={n Af=sf-f (18)

where {---} denote the average over the assembly of surface roughness functions
characterized by the same RMS roughness amplitude and lateral correlation length.
On the other hand, we find from (15) that

(658)p) = (27)28(P)FE (19)
where
3 = (¢ (). (20)

Thus we can write (17) in the convenient form of a Fredholm integral equation

'Z’R;K = ‘5 / (2n )2’CRK P‘l’R.P (21)
where

P = ~(WpAg/7k ) (2m)?6(K) 22)
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and

Kex,p= A9K+RK’ .P/gK-t-R (23)

This integral equation can be effectively solved by means of the ‘smoothing
method’ (Maradudin 1986). Thus we can write, instead of (21),

d?pP
bru = Ple + [ GriMex,p(Pap) (24)

where the new kernel M is itself a solution of another integral equation, namely

d2
Mpxp= K:RKP'I'/(Z C)QZMRK,QAMR,Q p (25)

At first sight it may appear that nothing has been gained by this procedure. A
complicated integral equation has been replaced by two other still more involved
integral equations. But in fact two decisive simplifications have been achieved. First,
equation (24) gives rise to another equation which is algebraic rather than integral and
easily soluble. Furthermore, if one solves equation (25) perturbatively to some finite
order (by retaining, for instance, only the first non-vanishing term in the iterated
kerne] approximation) this is equivalent to an infinite order perturbation schema
applied to the original equation (21).

4. The average wavefunction

We begin by calculating the average wavefunction. Averaging both sides of equation
{(24) we have

('ZR;K) = +/(2 )gMRx p('#"xp) (26)
where the average kernel is
Mpx,p = Mgk p) = ({(K} + (KAK) + (K(AKAKY) + - gk, p (27
by (24). We note that (X) = 0. Thus, the first non-zero term in the expansion (27)

is M~ (KAK) = (Agic) px—sA05 R, p)» that s

d?s (AQ{JC_-;)-RK S‘AQE?;)R;S-P)

J‘:’[R;K,P =
GF olnikin

)

The precise form of the right-hand side of equation (28) cannot, in general, be
calculated, because it depends on the correlation of a wavefunction at two different
points of the surface and this depends, in turn, on the specific physical situation. (For

the present case, the appropriate functions are calculated in the appendix.) In order
to proceed further, let us define a new function H by

HE (Y =Y = ($820¢(y DRy ))) /808 (29)
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where a,b = +. This function depends on the difference Y — Y, because the
operation of taking averages re-establishes the translational invariance in the z-y
plane. Thus, we immediately obtain

(AgiDendR0) = (2m76(Q + @IL IR FLI(Q) (30)

where the function F is given by the Fourier transform
Fel@) = [@ze97 (R 2)-1). 61

The translational invariance of averages implies furthermore that the kernel M is
diagonal in its two last indices

MR;K,P = (27)°8(K - P)px (32)

defining the quantity I, analogous to a self-energy function . We note that, as
anticipated, the equation (26) is thus algebraic rather than integral, with solution

dok | WgAp

(1,1’111{) =1z ERK = m_ﬁ(};)(l _ER.O)@‘A’)?&(I{) (33)

using (22). We note, lastly, that in the approximation in which (28} is valid,

_/(2 )2 K_+;2)S+R(K_S}' . (34)

In this way we have computed the average of the only unknown of (2), ie.
the quantity (1% ({)}. Thus, this same equation allows us to calculate the average
wavefunction of a conduction electron anywhere inside the metal. On the other hand,
it is not apparent that an average wavefunction is an interesting (or even meaningful)
quantity. In order to compute the reflectivity of the randomly rough surface, for
instance, we need instead the average particle currents which, on account of spatial
correlations, clearly cannot be expressed simply as products of average wavefunctions
and their derivatives.

5. The quantum reflectivity of a rough surface

We now take the asymptotic limit = € —4& in equation (2}, ie. we consider a
position well below the mean excursion of the surface roughness. It is seen that the
wavefunction for a conduction electron in the metal is

2K
(27)?

where the reflection amplitude Ry o is given by

(&) = [axem* 6@+ [ G Ruc0e @652 39)

R = g [ Y QoD CNR(Cr). 9
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By the Fourier transform formulae (15) and (16),

1 d?s . -
Bro = 5 | Gryi9aa-r-sxs €

‘We note that for the case of a perfectly smooth surface the corresponding reflection
amplitude R(® s

(+)
0 _ ¢ ()
RO,Q_—A ()()

The average scattered current involves not only (R} but the average (R* R}, given by

~E—~(27)’§(K - Q). (38)

(R %.Q KP) 7 Wpfd2}/d2yl ell- (K~ Q)Y+(K-P)Y']C QP(Y -Y-.')

=(27)*8(Q - P)rg g (39)
where
. / d*Ze I K=-DZCp 4 o (2Z) (40)
KQ ™ lWle K.QQ
and
Cria.p(Z) = (857 (COY NP (YN - )Wk (LY - 2)))
= f;C,QfK,P[LK;Q,P(Z) + 1] (41)

by the properties of averages, where

(A5 (CONPECONAIGTHCY = )i (((Y ~ Z)))

Lyg.q,p(Z) = fealnr

(42)
and
Fre.q = (5 (YW C(Y)). (43)

Thus, the function r separates naturally into specular and diffuse contributions r(®)
and r(dJ which combine additively

rrq = R (2m)6(K - Q) + ridy (44)
where, according to (40) and (41)

v = i k2 [Wi]? (45)

and

d |f . l K-
e = jﬁ/dzze D2 Lkiqa(2): (46)
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According to (38), we see that 2 perfectly smooth surface can produce only specular
reflections.

In an earlier treatment of this scattering problem one of us, following Shen and
Maradudin (1980), performed a separation of the scattered intensity into specular
and diffuse contributions which was similar in form, although different in principle
from the present one (Moraga 1987). Its purpose was, however, the same. Given
a current incident with a certain direction K, the second term in the RHs of (35)
allows us to compute the particle current scattered by the randomly rough surface.
According to (44) this scattered current divides naturally into a specular and a diffuse
contribution, which we identify with the specular and diffuse parts of the distribution
function. Thus, the specularity parameter appearing in the boundary conditions for
the Boltzmann transport equation is taken here to be identical with the specular part
of the quantum reflectivity function; i.e. the ratio of the average specularly scattered
current to the incident current

This procedure can be justified in general terms by making use of microscopic
considerations. As is well known, the quantum transport theory proceeds not from
a transport equation, but by identifying the distribution function with certain one-
particle Green function (Kadanoff and Baym 1962, Rammer and Smith 1986). Thus,
the problem of the spatial boundary conditions appropriate for this distribution func-
tion can be related to the corresponding problem for the Green function, which is in
turn related to that of the wavefunction by a well known prescription.

In the present case, this average is computed as follows. First, from (15) and
(16)—or, rather, their inverses—we see that

dz.S'd“;S
ko= _(Tj'i_ 1(s+5 )Y( (H d’x 51)- (47)

Furthermore, we have from (24)
(gq s%c 51 = (+)¢E:2)(21r)45(5')5(5') + / (2m)2 (-‘JQ SMK .57, s")(’f’fc s01)

— =i+) 70 oyt t (thSMK;S‘ ,ﬂ)
=JQ "'])K [(2 ) 6(5)5(5) + gg_}(l — EK,O)] (48)

by {33). On the other hand, the lowest non-zero contribution to the average of the
second term in the RHS of this equation is

(gg-.)SMK sna) - (Qg’;)slcx;sv,n) _ (Q(H Ags'g-x s

—(+ = ~(+ - L+
) e 355 x
= — (2m)28(5 + 8"V F§' 1) 5(5) (49)

by (25), (23) and (31). Thus, by (47)

~ d?8
frq =350 [1—(1—EK,0)-1 Tamy? Fae 2 S(S)] (50)
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and, in the approximation in which (34} is valid

rfs) |9(+)'¢’(0)|2
K= Wkl

d?s ~tr d%s
1_[1 (2 )g‘F( K—{-S( S)] (2 )gFf({+}f S(S)

(1)

In order that this reflected intensity can be properly interpreted in terms of
a quantum refiectivity function, it is necessary that the wavefunctions have correct
asymptotic properties. In our case we ought to take, for instance, as wavefunction
U(a,xzx) +iT(3 — o)V(a,%z) in (7) instead of just U(w,zx), and calculate
the reflected intensity in the limit in which these functions resemble plane waves
(Abramowitz and Stegun 1965) . Alternatively, we can proceed by calculating the
ratio of the intensity reflected by the rough surface to the intensity rcflected by a
perfectly smooth surface. Thus, as by (22} the first factor of the RHS of (51) is just

ig(” 9k 'JP the reftectivity function is obtained from it by a further division by
D S 16O /6O

The quantum reflectivity function p is thus
M _ [ d%8 o) -1+ 328 FUh)
|9'x)¢(+)(0){2 - (27)? Fricis(—5) (2m)z Friwl 5(5}

(32)

accurate up to terms of order F.

6. The specularity function

For practical purposes, a simplified form of the reflectivity function (52) can be used.
We note first that 3 = ¢(£)(0)+ O(5?). Furthermore, the rational function on the

RHS of (52) can be rep]aced by an exponcntial function of the appropriate variables,
maintaining the accuracy in F. Thus we can write

2
PK =.exp{2 Re (‘;732 [ };Q-JK(Q) F}g’b_!_x(Q)]} (53)

also exact up to terms of order F. As the wavevector of a conduction electron has
necessarily a fixed length k,, the subindex K in (53) denotes in fact the direction
in which the electron arrives at the rough surface. In the semiclassical formulations
which start from the Boltzmann transport equation, this dependence is important
because the transport coefficients turn out to be integrals over the angles defining
this direction.

The semiclassical and quantum formulation are related as follows. Under a mag-
netic field applied in the x-direction the wavevector of the electron as a function of
time ¢ is

k(1) = kpcosé

k(1) = kpcos(wt + ¢)sin b &4
k,(t) = —kpsin(wt + ¢)sin b
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where w is the same as before. Thus, the orbit of an electron passing at ¢ = 0
throughout the point z =0, y = rsin¢sinf and 2 =0 is
x(t) = wrtcosd y(t) = rein{wt + ¢)sin g

(35)
2z = r{cos{wi + ¢} — cos ¢]sin .

The projection of this orbit on the y—z plane is a circle of radius r = hkp /mw =
hkpc/feB centred at z, = hk,(t = 0)/mw, in accordance with equation (7). We
note that this radius r is related to the parameter o of (8) by

L (—zha)”z (56)

me

that @ is the angle between the trajectory at ¢ = O and the magnetic field, and that
the angle of incidence © is given by

cos©® = —sin $sin 9. (57)

We note that formula (53) has contributions of ail orders on the RMS amplitude of
the surface roughness § and the lateral correlation length « and that it further depends
on the strength and direction of the applicd magnetic field. The latter is, of course,
the main advantage of the present treatment over earlier formulations. Formerly,
experimental data were interpreted in terms of a phenomenological parameter p
or of the specularity function of Soffer (1967), both entirely independent of the
magnitude and direction of the magnetic field. In the present case, the appropriate
wavefunctions are, by (7), parabolic cylinder functions. Fortunately, the average of a
parabolic cylinder function is another parabolic cylinder function, and the correlation
of two such functions can be written as a series of products of two other parabolic
cylinder functions (see the appendix). This makes it possible to calculate analytic
formulae for the specularity function in this case.

In figures 2-5 we have plotted the values of this specularity as a function of the
angie of incidence © in which the electron, following a classical trajectory, would
arrive at the average surface, and 6, which is the angle made by this trajectory at the
point of incidence with the direction of the magnetic field. All figures correspond to
values of akp = 0.5, 6k = 0.25, while the strength of the magnetic field B (in
units of hck% /2e) varies from 2 to 4. It is seen that, at low fields, the specularity
function shows a considerable angular anisotropy although exhibiting a certain region
in which the surface appears to be nearly specular. When the magnetic field is
increased, these extremes of behaviour diminish, and the specularity becomes a much
smoother function of the angles. We note that the minimum of the specularity occurs
at intermediate values of 6, suggesting the interest of performing magnetoresistance
measurements in thin films as a function of the angle between the magnetic and
electric fields.

7. The longitudinal magnetoresistance of thin films

The longitudinal conductivity o of a thin metal film, i.e. E parallel to B and to the
plane of the film) in units of the bulk conductivity o, was calculated by Koenisberg
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Figure 2. The specularity function of a randomly  Figure 3, As in figure 2, except that B = 2.5.
rough surface as a function of © and &, which

are the angles that the classical trajectory makes

with the average surface and the magnetic feld,

respectively, at the point of incidence. Here akp =

0.5, §kp = 025 and B = 2 (B in units of

hckZ f2e).

Figure 4. As in figure 2, except that B = 3. Figure 5. As in figure 2, except that B = 4.

(1953), Kao (1965), Ditlefsen and Lothe (1966), McGill (1968) and Way and Kao
(1972). All these authors assumed, besides the validity of the Boltzmann transport
equation, a spherically symmetrical mean-free path and Fermi surface, and that the
boundary scattering could be described by a specularity parameter. In the notation
of the present paper, this conductivity is

o _ . 8 . _ exp(—¥/n)
0w ' T Ind /de s}nﬂcosgafdz/dqﬁ(l P pexp(~¥/m) %

where d is the thickness of the film, n = {/rsin & (I is the mean-free path), i is the
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angle traversed by an electron on its classical path from a point on the surface to a
generic point in the bulk and ¥ is the angle traversed along the same orbit if it were
extended until the clectron hits a boundary again. These angles can be expressed in
terms of 8, ¢ and z (Way and Kao 1972). The specularity function p is given by (33),
where the parallel component of the wavevector K is related to the angles by (54)
evaluated at ¢ = 0.

pre 3t

dit

Figure 6. The resistivity p (in units of the bulk resistivity peo) of a thin metallic film of
thickness 4 (in units of the mean-free path I for the case when the electric and magnetic
fields are both longitudinal and parallel. Here akp = 0.5, ! = 5, 6kp = 0.25 and
B = 2. The discontinuous line is the magnetoresistance calculated according to the
theory of this paper; the continuous lines are calculated for p = a constant having the
values shown.

dlt

Figure 7. As in figure 6, except that §kp = 0.125 and B = 5.5.

In figures 6 and 7 we show calculations of this longitudinal magnetoresistance of
thin metallic films as a function of thickness d in units of the mean-free path L. In
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both figures, aky = 0.5 and [ = 5; in figure 6 6k = 0.25 and B = 5, and in figure
7, 6kp = 0.125 and B = 5.5. The curves calculated using the present approach
are compared with curves computed from the usual theory in which p is a constant
(Way and Kao 1972). It is apparent that for high enough values of the magnetic
field, the magnetoresistence computed according to the present theory is similar in
shape to one of those obtained from the usual formalism (figure 7). On the con-
trary, for a somewhat smaller field, the behaviour predicted by the theory presented
here is qualitatively different from the magnetoresistence calculated according to the
older formalism (figure 6); corrcsponding in appearance to surfaces which become
smoother as the thickness of the film is diminished. Of course if the magnetic field
is decreased further the magnetoresistance itself also decreases, and the new results
tend to conform again with those chtained by the usual method.

8. Conclusions

A priori, one should not expect much of a transport theory baséd on the Boltzmann
equation. In fact, this treatment gives surprisingly correct results about the electrical
resistivity of solids. Tn a well known classical paper, for instance, Prange and Kadanoff
(1564) derived a transport equation for the case of phonons and electrons using the
formulation of Kadanoff and Baym (1962). They wrote that their results ‘lead one
to believe that there is nothing to worry about the use of the Boltzmann equation
throughout the entire temperature range. With the Landau correction, ordinary
transport properties should be capable of description to a very high accuracy’. They
also concluded that the DC resistivity ‘is unaffected by many-body effects’. In recent
years, the transport properties of solids have been further and extensively explored
by means of quantum field-theoretical methods (Rammer and Smith 1986, Mahan
1987). The use of these methods has provided additional microscopic justification
for the use of the Boltzmann equation, and has shown how this approach should be
generalized in order to take into account renormalization and lifetime effects.

When the treatment based on the Boltzmann equation is extended to the case of
small samples, however, the resulis have not been so good. Sambles and a number of
collaborators (Sambles and Elsom 1980, Sambles and Preist 1982, Preist and Sambles
1986) have analysed the discrepancies between theory and experiment in this case,
and have shown that they originate not from the Boltzmann equation itseif, but from
the usc of inadequatc boundary conditions. When the correct conditions are used,
however, surprisingly good agreements are obtained, ¢ven in the case of metals with
quite complicated Fermi surfaces.

This paper has been concerncd with setting up just these boundary conditions for
the case of scattering by a random surface in the presence of a magnetic field. The
new boundary conditions, in the form of an angie-dependent and field-dependent
specularity function p, have been obtained by solving the Schrodinger equation ap-
propriate for this situation approximately. Besides its dependence on the strength and
direction of the magnetic field, this p is a function of the RMs average of the depar-
ture of the surface from Aatness and of the lateral correlation length. By exploiting
the properties of the parabolic cylinder functions (the wavefunctions of the electrons
in this case), we have computed explicit formulae for the correlation functions, whose
Fourier transforms determine the value of p.

In view of these considerations, it appears reasonable to suppose that the elec-
trical resistivities of thin films and wires computed using these improved boundary
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conditions will be in good accord with experience in this case too. For instance, we
have found that the spatial anisotropy of the new specularity parameter results in
significant differences between the longitudinal magnetoresistance of thin flms pre-
dicted by the new and the old formulations at intermediate values of the magnetic
field strength. Thus, one should be able to distinguish between these two theories by
means of resistivity measurements made on films whose surface characteristics have
been independently determined.

Appendix

Let U(a,z) denote the parabolic cylinder function of argument = and parameter o
(Abramowitz and Stegun 1965). If ¢ is a Gaussian random variable with zero mean
and standard deviation é, and (..-) denotes the average taken over this probability
distribution, then

(Ula, B( + z)])

_ (1 + ﬁ262/2)a/2—1/4 [ Z§ﬁ452 ] U ﬂzo
T (- gEe e P 3 - gia )\ i g

This can be most easily proved proceeding from the integral representation of U/, By
making use of its asymptotic expansion, one can see that for 8z, > 0—in spite of
appearances—this average is regular at the point 8262 = 2.

If, furthermore, ¢, and ¢, are two such random variables with correlation §*W,
it can also be shown that

1] b2 b?
(Uley, By(Gut2o)1UTog, Bl Gt 20y = exp { | 7o + gk + o] | asteor?
11 22

i (a;)" (o = $)alas ~ 3,
: (‘111)(“1"’1/““)/2(azg)(“=+1f2+n)/2 l
n=

X

X U(ay +n,2)0(a,+ n, %)
where
= bl/(a11)1/2 %= bz/(ﬂzz)llz
o, =d;dy — af&zdz + 6fﬁ§641V2/4
ag, = dyd, — al6%d, + B2626 W24
@12 = ﬁl,ﬁzé?W
b, = d,d,B120, — FP20,6%d,/2 — 3,826% 2, W [2
by = dydyByzgy ~ B32956%d, /2 — 838,822y, W/2
c= B36%25,d, /8 + 816 2y dy [8 — dydy( 8125, + BR25,) /4 + BLB36° 20120, W/4
d, =1+ §52/2 d, =1+ p26%/2
and

d=d,d, - B2626*W?/4.
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